Skip to main content

MDoubt No 000001 - JEE


Question : For $m > 0, n > 0$, let $\displaystyle I_{m,n}=\int\limits_{0}^{1}x^m(\log x)^ndx$, then $I_{5,5}$ is given by

(a) $-\dfrac{5!}{6^5}$
(b) $-\dfrac{5!}{5^5}$
(c) $-\dfrac{5!}{6^6}$
(d) $\dfrac{5!}{6^6}$
Solution : Given $\displaystyle I_{m,n}=\int\limits_{0}^{1}x^m(\log x)^ndx$
put $\log x =-t$
We get $\displaystyle I_{m,n}=(-1)^n\int\limits_{0}^{\infty}t^ne^{-(m+1)t}dt$
now put $(m+1)t=u$
$\implies\displaystyle I_{m,n}=(-1)^n\int\limits_{0}^{\infty}\left(\dfrac{u}{m+1}\right)^ne^{-u}\dfrac{du}{m+1}$
$\implies\displaystyle I_{m,n}=\frac{(-1)^n}{(m+1)^{n+1}}\int\limits_{0}^{\infty}u^ne^{-u}du$
As we know Gamma Function is
$\displaystyle\left[\int\limits_{0}^{\infty}x^{(z-1)}e^{-x}dx=\Gamma(z)=(z-1)!\right]$
$\implies I_{m,n}=\dfrac{(-1)^n\Gamma(n+1)}{(m+1)^{n+1}}$
$\implies I_{5,5}=\dfrac{(-1)^5\Gamma(5+1)}{(5+1)^{5+1}}$
$\implies I_{5,5}=-\dfrac{5!}{6^6}$

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100