Skip to main content

MDoubt No 000003 - UPSC IAS Mathematics Optional


UPSC [CSE 2019 P1]
Question 1(d) : If $$A=\begin{bmatrix} 1 & 2 & 1\\ 1 & -4 & 1\\ 3 & 0 & -3 \end{bmatrix} \text{and } B=\begin{bmatrix} 2 & 1 & 1\\ 1 & -1 & 0\\ 2 & 1 & -1 \end{bmatrix}$$ then show that $AB=6I_3$. Use this result to solve the following system of equations : $$\begin{array}{r} 2x+y+z=5\\ x-y=0\\ 2x+y-z=1\\ \end{array}$$
Solution : Given $A=\begin{bmatrix} 1 & 2 & 1\\ 1 & -4 & 1\\ 3 & 0 & -3 \end{bmatrix} \text{and } B=\begin{bmatrix} 2 & 1 & 1\\ 1 & -1 & 0\\ 2 & 1 & -1 \end{bmatrix}$
$\implies AB=\begin{bmatrix} 1 & 2 & 1\\ 1 & -4 & 1\\ 3 & 0 & -3 \end{bmatrix}\begin{bmatrix} 2 & 1 & 1\\ 1 & -1 & 0\\ 2 & 1 & -1 \end{bmatrix}$
$\implies AB=\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 6 \end{bmatrix}=6\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}=6I_3$
Hence Proved.
So, $AB=6I_3$
$\implies ABB^{-1}=6I_3B^{-1}$
$\implies A=6B^{-1}$
$\implies B^{-1}=\dfrac{1}{6}A$
Now, $$\begin{array}{r} 2x+y+z=5\\ x-y=0\\ 2x+y-z=1\\ \end{array}$$ This can be written as $\begin{bmatrix} 2 & 1 & 1\\ 1 & -1 & 0\\ 2 & 1 & -1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 5\\ 0\\ 1 \end{bmatrix}$.
$\implies BX=C$, where $B=\begin{bmatrix} 2 & 1 & 1\\ 1 & -1 & 0\\ 2 & 1 & -1 \end{bmatrix}, X=\begin{bmatrix} x\\ y\\ z \end{bmatrix}$ and $C=\begin{bmatrix} 5\\ 0\\ 1 \end{bmatrix}$
$\implies B^{-1}BX=B^{-1}C$
$\implies X=B^{-1}C$
$\implies X=\dfrac{1}{6}AC$
$\implies X=\dfrac{1}{6}\begin{bmatrix} 1 & 2 & 1\\ 1 & -4 & 1\\ 3 & 0 & -3 \end{bmatrix}\begin{bmatrix} 5\\ 0\\ 1 \end{bmatrix}$
$\implies X=\dfrac{1}{6}\begin{bmatrix} 6\\ 6\\ 12 \end{bmatrix}=\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$
$\therefore x=1, y=1, z=2$.

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100