Skip to main content

MDoubt No 000006 - GATE


GATE [EC, 2017, 2 marks]
Question :
The values of the integrals $\displaystyle\int\limits_0^1\left(\int\limits_0^1\frac{x-y}{(x+y)^3}dy\right)dx$ and $\displaystyle\int\limits_0^1\left(\int\limits_0^1\frac{x-y}{(x+y)^3}dx\right)dy$ are
(a) same and equal to $0.5$
(b) same and equal to $-0.5$
(c) $0.5$ and $-0.5$ respectively
(d) $-0.5$ and $0.5$ respectively

Solution : $\displaystyle\int\limits_0^1\left(\int\limits_0^1\frac{x-y}{(x+y)^3}dy\right)dx$
$\displaystyle=\int\limits_0^1\left[\int\limits_0^1\left(\dfrac{2x}{(x+y)^3}-\dfrac{1}{(x+y)^2}\right)dy\right]dx$
$\displaystyle=\int\limits_0^1\left[\dfrac{-x}{(x+y)^2}+\dfrac{1}{x+y}\right]_0^1dx$
$\displaystyle=\int\limits_0^1\dfrac{1}{(x+1)^2}dx$
$=\left[\dfrac{-1}{x+1}\right]_0^1$
$=-\dfrac{1}{2}+1$
$=\dfrac{1}{2}=0.5$

Now
$\displaystyle\int\limits_0^1\left(\int\limits_0^1\frac{x-y}{(x+y)^3}dx\right)dy$
$\displaystyle=\int\limits_0^1\left[\int\limits_0^1\left(\dfrac{1}{(x+y)^2}-\dfrac{2y}{(x+y)^3}\right)dx\right]dy$
$\displaystyle=\int\limits_0^1\left[\dfrac{-1}{x+y}+\dfrac{y}{(x+y)^2}\right]_0^1dy$
$\displaystyle=\int\limits_0^1\dfrac{-1}{(y+1)^2}dy$
$=\left[\dfrac{1}{y+1}\right]_0^1$
$=\dfrac{1}{2}-1$
$=-\dfrac{1}{2}=-0.5$
CORRECT ANSWER : C

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100