Skip to main content

MDoubt No 000007 - GATE


GATE [EE, 2014, 2 marks]
Question : To evaluate the double integral $\displaystyle\int\limits_0^8\left(\int\limits_{y/2}^{y/2+1}\left(\frac{2x-y}{2}\right)dx\right)dy$, we make the subsitution $\displaystyle u=\left(\frac{2x-y}{2}\right)$ and $\displaystyle v=\frac{y}{2}$. The integral will reduce to

(a) $\displaystyle\int\limits_0^4\left(\int\limits_0^2 2u du\right)dv$
(b) $\displaystyle\int\limits_0^4\left(\int\limits_0^1 2u du\right)dv$
(c) $\displaystyle\int\limits_0^4\left(\int\limits_0^1 u du\right)dv$
(d) $\displaystyle\int\limits_0^4\left(\int\limits_0^2 u du\right)dv$

Solution : Given $\displaystyle\int\limits_0^8\left(\int\limits_{y/2}^{y/2+1}\left(\frac{2x-y}{2}\right)dx\right)dy$
$u=\left(\dfrac{2x-y}{2}\right)$
$\implies du=dx$
$x=y/2 \implies u=0$
$x=y/2+1 \implies u=1$
$v=\dfrac{y}{2}$
$\implies dv=\dfrac{dy}{2}$
$x=0\implies v=0$
$x=0\implies v=4$
$\therefore$ the integral reduces to
$\displaystyle\int\limits_0^4\left(\int\limits_0^1 2u du\right)dv$
CORRECT ANSWER : B

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100