Skip to main content

MDoubt No 000008 - GATE


GATE [CS, 2015, 2 marks]
Question : If for non-zero $x$, $af(x)+bf\left(\dfrac{1}{x}\right)=\dfrac{1}{x}-25$ where $a\ne b$ then $\displaystyle\int\limits_1^2f(x)dx$ is

(a) $\displaystyle\frac{1}{a^2-b^2}\left[a(\ln 2-25)\frac{47b}{2}\right]$
(b) $\displaystyle\frac{1}{a^2-b^2}\left[a(2\ln 2-25)-\frac{47b}{2}\right]$
(c) $\displaystyle\frac{1}{a^2-b^2}\left[a(2\ln 2-25)+\frac{47b}{2}\right]$
(d) $\displaystyle\frac{1}{a^2-b^2}\left[a(\ln 2-25)-\frac{47b}{2}\right]$

Solution : Given $af(x)+bf\left(\dfrac{1}{x}\right)=\dfrac{1}{x}-25\quad\quad\quad\ldots(1)$
replacing $\dfrac{1}{x}$ by $x$ in $(1)$
$\implies af\left(\dfrac{1}{x}\right)+bf(x)=x-25\quad\quad\quad\ldots(2)$
Solving $(1)$ and $(2)$
$\implies f(x)=\dfrac{1}{a^2-b^2}\left[a\left(\dfrac{1}{x}-25\right)-b(x-25)\right]$
$\displaystyle\int\limits_1^2f(x)dx$
$=\dfrac{1}{a^2-b^2}\left[a(\ln x-25x)-\left(\dfrac{x^2}{2}-25x\right)\right]_1^2$
$=\displaystyle\frac{1}{a^2-b^2}\left[a(\ln 2-25)\frac{47b}{2}\right]$
CORRECT ANSWER : A

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100