Skip to main content

MDoubt No 000009 - GATE


GATE [CE, 2009, 2 marks]
Question : The value of the integral $\displaystyle\int\limits_{C}\dfrac{\cos (2\pi z)}{(2z-1)(z-3)}dz$ (where $C$ is a closed curve given by $|z|=1$ is

(a) $-\pi i$
(b) $\displaystyle\dfrac{\pi i}{5}$
(c) $\displaystyle\dfrac{2\pi i}{5}$
(d) $\pi i$

Solution : $\displaystyle\int\limits_{C}\dfrac{\cos (2\pi z)}{(2z-1)(z-3)}dz$
putting $(2z-1)(z-3)=0$
so the singularities are $z=\dfrac{1}{2}$ and $z=3$
but only $z=\dfrac{1}{2}$ lies inside the circle $|z|=1$ (the closed curve)
hence by Cauchy's integral theorem
$\displaystyle\dfrac{1}{2}\int\limits_{C}\dfrac{\left[\dfrac{\cos (2\pi z)}{(z-3)}\right]}{\left(z-\dfrac{1}{2}\right)}dz=\dfrac{1}{2}2\pi if(\dfrac{1}{2})$
where $f(z)=\dfrac{\cos (2\pi z)}{(z-3)}$
$\therefore\displaystyle\int\limits_{C}\dfrac{\cos (2\pi z)}{(2z-1)(z-3)}dz=\dfrac{2\pi i}{5}$
CORRECT ANSWER : C

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100