Skip to main content

MDoubt No 000011 - GATE


GATE [EC, 2012, 2 mark]
Question : If $f(z)=C_0+C_1z^{-1}$, then $\displaystyle\oint\limits_{\text{unit circle}}\dfrac{1+f(z)}{z}dz$ is given by

(a) $2\pi C_1$
(b) $2\pi(1+C_0)$
(c) $2\pi jC_1$
(d) $2\pi j(1+C_0)$

Solution : Let $\displaystyle I=\oint\limits_{\text{unit circle}}\dfrac{1+f(z)}{z}dz$
Given $f(z)=C_0+C_1z^{-1}$
$\displaystyle I=\oint\limits_{\text{unit circle}}\dfrac{1+C_0+C_1/z}{z}dz$
$\displaystyle I=\oint\limits_{\text{unit circle}}\dfrac{z(1+C_0)+C_1}{z^2}dz$
Singularities for $I$ is $z=0$ and $z=0$ lies inside the unit circle.
$\therefore$ by Cauchy's integral theorem we have,
$I=2\pi j\times(\text{residue of }\dfrac{z(1+C_0)+C_1}{z^2}\text{ at } z=0)$
$=2\pi j\left\{\dfrac{1}{1!}\dfrac{d}{dz}z^2\dfrac{z(1+C_0)+C_1}{z^2}\right\}_{z=0}$
$=2\pi j\{1+C_0\}_{z=0}$
$\therefore$ Answer $=2\pi j(1+C_0)$
CORRECT ANSWER : D

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100