Skip to main content

MDoubt No 000014 - GATE


GATE [EC, 2015, 1 mark]
Question : Let $z=x+iy$ be a complex variable. Consider that contour integartion is performed along the unit circle in anticlockwise direction. Which one of the following statements is NOT TRUE?

(a) The residue of $\dfrac{z}{z^2-1}$ at $z=1$ is $1/2$
(b) $\displaystyle\oint\limits_{C}z^2dz=0$
(c) $\displaystyle\dfrac{1}{2\pi i}\oint\limits_{C}\dfrac{1}{z}dz=1$
(d) $\bar{z}$ (complex conjugate of $z$) is analytical function

Solution : $\rightarrow$ Residue of $\dfrac{z}{z^2-1}$ at $\displaystyle z=1=\lim_{z\to 1}(z-1)\dfrac{z}{z^2-1}$
$\displaystyle =\lim_{z\to 0}\dfrac{z}{z+1}$
$=\dfrac{1}{2}$
Option (A) is TRUE

$\rightarrow$ $z^2$ is analytical at every point within and on circle $|z|=1$
by Cauchy's integral theorem, we get
$\displaystyle\oint\limits_{C}z^2dz=0$
Option (B) is TRUE

$\rightarrow\dfrac{1}{z}$ has a pole at $z=0$
$\therefore$ by Cauchy's integral theorem, we get
$\displaystyle\oint\limits_{C}\dfrac{1}{z}dz=2\pi i\left[z\dfrac{1}{z}\right]_{z=0}$
$\displaystyle\dfrac{1}{2\pi i}\oint\limits_{C}\dfrac{1}{z}dz=1$
Option (C) is TRUE

$\rightarrow\bar{z}=x-iy=u+iv$
$\implies u=x$ and $v=-y$
$\implies\begin{array} \\ u_x=1 & v_x=0\\ u_y=0 & v_y=-1 \end{array}$
$u_x\ne v_y$ i.e. one of the Cauchy-Reimann equations is not satisfied.
$\therefore \bar{z}$ is not analytical.
Option (D) is NOT TRUE
CORRECT ANSWER : D

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100