Skip to main content

MDoubt No 000015 - GATE


GATE [EE, 2016, 1 mark]
Question : The value of the integral $$\oint\limits_{C}\dfrac{2z+5}{\left(z-\dfrac{1}{2}\right)(z^2-4z+5)}dz$$ over the contour $|z|=1$, taken in the anti-clockwise direction, would be

(a) $\dfrac{24\pi i}{13}$
(b) $\dfrac{48\pi i}{13}$
(c) $\dfrac{24}{13}$
(d) $\dfrac{12}{13}$

Solution : Let $f(z)=\dfrac{2z+5}{\left(z-\dfrac{1}{2}\right)(z^2-4z+5)}$
Poles of $f(z)$ are $\dfrac{1}{2},2+i$ and $2-i$
Only $z=\dfrac{1}{2}$ lies inside the circle $|z|=1$
$\displaystyle \text{Residue, }R=\lim_{z\to 1/2}\left[\left(z-\dfrac{1}{2}\right)f(z)\right]$
$\displaystyle R=\lim_{z\to 1/2}\left[\dfrac{2z+5}{z^2-4z+5}\right]$
$\displaystyle R=\dfrac{2\left(\dfrac{1}{2}\right)+5}{\left(\dfrac{1}{2}\right)^2-4\left(\dfrac{1}{2}\right)+5}$
$\displaystyle R=\dfrac{24}{13}$
$\therefore$ by Residue theorem, we get
$\displaystyle\oint\limits_{C}\dfrac{2z+5}{\left(z-\dfrac{1}{2}\right)(z^2-4z+5)}dz=2\pi iR=\dfrac{48\pi i}{13}$
CORRECT ANSWER : B

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100