Skip to main content

MDoubt No 000017 - GATE


GATE [ME, 2017, 2 marks]
Question : Consider the differential equation $3y''(x)+27y(x)=0$ with initial conditions $y(0)=0$ and $y'(0)=2000$. The value of $y$ at $x=1$ is____.

Solution : Given $3y''(x)+27y(x)=0$
$\implies (3D^2+27)y=0$
The auxiliary equation is $3D^2+27=0$
$\implies D=\pm 3i$
General solution is $y=C_1\cos 3x+C_2\sin 3x\quad\quad\quad\ldots\text{(1)}$
differentiating equation $(1)$
$y'=-3C_1\sin 3x+3C_2\cos 3x$
$y(0)=0$
$\implies C_1=0$
$y'(0)=2000$
$3C_2=2000$
$\implies C_2=\dfrac{200}{3}$
$\therefore$ the particular solution is
$y=\dfrac{2000\sin 3x}{3}$
At $x=1$, $y=\dfrac{2000\sin 3}{3}$
$y=94.08$
CORRECT ANSWER : 94.08

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100