Skip to main content

MDoubt No 000018 - GATE


GATE [EE, 2007, 2 marks]
Question : The linear operation $L(x)$ is defined by the cross product $L(x)=b\times X$, where $b=\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ and $X=\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ are three dimensional vectors. The $3\times 3$ matrix $M$ of this operation sstisfies $$L(x)=M\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$ Then the eigen values of $M$ are

(a) $0,+1,-1$
(b) $1,-1,1$
(c) $i,-i,1$
(d) $i,-i,0$

Solution : As $L(x)=M\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$ and $L(x)=b\times X$
$\therefore M\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=b\times X \quad\quad\ldots(1)$
Since $M$ is $3\times 3$ matrix,
let $M=\begin{bmatrix} a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ a_7 & a_8 & a_9 \end{bmatrix}$ and
$b\times X=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ 0 & 1 & 0\\ x_1 & x_2 & x_3 \end{vmatrix}$
$=x_3\hat{i}+0\hat{j}-x_1\hat{k}$
$\begin{bmatrix} x_3 & 0 & -x_1\\ \end{bmatrix}^T$
Equation $(1)$ becomes
$\begin{bmatrix} a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ a_7 & a_8 & a_9 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} x_3\\ 0\\ -x_1 \end{bmatrix}$
On comparing
$\begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ -1 & 0 & 0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} x_3\\ 0\\ -x_1 \end{bmatrix}$
So, $M=\begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ -1 & 0 & 0 \end{bmatrix}$
For eigen vales of $M$
$|M-\lambda I|=0$
$\begin{vmatrix} -\lambda & 0 & 1\\ 0 & -\lambda & 0\\ -1 & 0 & -\lambda \end{vmatrix}=0$
$-\lambda(\lambda^2-0)+1(0-\lambda)=0$
$\lambda^3+\lambda=0$
$\lambda(\lambda^2+1)=0$
$\lambda=0,\pm i$
Eigen values are $i, -i, 0$
CORRECT ANSWER : D

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100