Skip to main content

MDoubt No 000019 - GATE


GATE [EC, 2017, 1 mark]
Question : Consider the $5\times 5$ matrix $$A=\begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 5 & 1 & 2 & 3 & 4\\ 4 & 5 & 1 & 2 & 3\\ 3 & 4 & 5 & 1 & 2\\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}$$ It is given that $A$ has only one real eigen value.
Then the real eigen value of $A$ is

(a) $-2.5$
(b) $0$
(c) $15$
(d) $25$

Solution : The characteristic equation is $|A-\lambda I|=0$
$\implies\begin{vmatrix} 1-\lambda & 2 & 3 & 4 & 5\\ 5 & 1-\lambda & 2 & 3 & 4\\ 4 & 5 & 1-\lambda & 2 & 3\\ 3 & 4 & 5 & 1-\lambda & 2\\ 2 & 3 & 4 & 5 & 1-\lambda \end{vmatrix}=0$
$R_1\to R_1+R_2+R_3+R_4+R_5$
$\implies\begin{vmatrix} 15-\lambda & 15-\lambda & 15-\lambda & 15-\lambda & 15-\lambda\\ 5 & 1-\lambda & 2 & 3 & 4\\ 4 & 5 & 1-\lambda & 2 & 3\\ 3 & 4 & 5 & 1-\lambda & 2\\ 2 & 3 & 4 & 5 & 1-\lambda \end{vmatrix}=0$
taking out $15-\lambda$ from $R_1$
$\implies[15-\lambda]\begin{vmatrix} 1 & 1 & 1 & 1 & 1\\ 5 & 1-\lambda & 2 & 3 & 4\\ 4 & 5 & 1-\lambda & 2 & 3\\ 3 & 4 & 5 & 1-\lambda & 2\\ 2 & 3 & 4 & 5 & 1-\lambda \end{vmatrix}=0$
$\implies 15-\lambda=0$
$\implies\lambda=15$
CORRECT ANSWER : C

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :