Skip to main content

MDoubt No 000020 - GATE


GATE [ME, 2016, 2 marks]
Question : The error in numerically computing the integral $\displaystyle\int\limits_0^{\pi}(\sin x+\cos x)dx$ using the Trapezoidal rule with three intervals of equal lenght between $0$ and $\pi$ is____.

Solution : Given $F(x)=\sin x+\cos x$
$h=\dfrac{b-a}{n}=\dfrac{\pi-0}{3}=\dfrac{\pi}{3}$

 $x$   $0$   $\dfrac{\pi}{3}$   $\dfrac{2\pi}{3}$   $\pi$ 
 $\sin x+\cos x$   $1$   $1.366$   $0.366$   $-1$ 

By Trapezoidal rule
$\displaystyle\int\limits_{a}^{b}F(x)dx=\dfrac{h}{2}[(y_0+y_{n})+2(y_1+y_2+\cdots+y_{n-1})]$
$\displaystyle\int\limits_{0}^{\pi}\sin x+\cos xdx=\dfrac{\pi/3}{2}[(1-1)+2(1.366+0.366)]$
$\displaystyle\int\limits_{0}^{\pi}\sin x+\cos xdx=1.181$
By definite integration
$\displaystyle\int\limits_{0}^{\pi}\sin x+\cos xdx=\left|-\cos x+\sin x\right|^{0}_{\pi}$
$\displaystyle\int\limits_{0}^{\pi}\sin x+\cos xdx=2$
Error $=$ Exact Value $-$ Approximate Value
$=2-1.181$
$=0.187$
CORRECT ANSWER : 0.187

Comments

Post a Comment

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100