Skip to main content

MDoubt No 000021 - GATE


GATE [ME, 2017, 2 marks]
Question : $P(0.3)$, $Q(0.5,4)$ and $R(1,5)$ are three points on the curve defined by $f(x)$. Numerical integration is carried out using both Trapezoidal rule and Simpson's rule within limits $x=0$ and $x=1$ for the curve. The difference between the two results will be

(a) $0$
(b) $0.25$
(c) $0.5$
(d) $1$

Solution :
  $x$     $0$     $0.5$     $1$  
  $y$     $3$     $4$     $5$  

$h=\dfrac{1}{2}$
Using Trapezoidal rule
$\displaystyle\int\limits_{a}^{b}F(x)dx=\dfrac{h}{2}[(y_0+y_{n})+2(y_1+y_2+\cdots+y_{n-1})]$
$\displaystyle\int\limits_{0}^{1}F(x)dx=\dfrac{1/2}{2}[(3+5)+2(4)]$
$\displaystyle\int\limits_{0}^{1}F(x)dx=4$

Using Simpson's rule
$\displaystyle\int\limits_{a}^{b}F(x)dx=\dfrac{h}{3}[(y_0+y_n)+4(y_1+y_3+\cdots+y_{n-1})+2(y_2+y_4+\cdots+y_{n-2})]$
$\displaystyle\int\limits_{0}^{1}F(x)dx=\dfrac{1/2}{3}[(8+16)+4(4)]$
$\displaystyle\int\limits_{0}^{1}F(x)dx=4$
Difference between two results $=0$
CORRECT ANSWER : A

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :

Daily Question 108

Daily Question 108 $\textbf{Q108.}$ If $f(x)$ is a periodic function having period $7$ and $g(x)$ is periodic function having period $11$ then the period of $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ is (A) $231$ (B) $385$ (C) $1155$ (D) $77$ $\textbf{Ans.} (C)$ $\textbf{Sol.}$ Given $D(x)=\begin{vmatrix} f(x) & f\left(\dfrac{x}{3}\right)\\ g(x) & g\left(\dfrac{x}{5}\right)\\ \end{vmatrix}$ $\implies D(x)=f(x)g\left(\dfrac{x}{5}\right)-g(x)f\left(\dfrac{x}{3}\right)$ Period of $f(x)g\left(\dfrac{x}{5}\right)$ is $7\times 55 = 385$ Period of $g(x)f\left(\dfrac{x}{3}\right)$ is $11\times 21 = 231$ Hence the period of $D(x) = \text{LCM}$ of $(385, 231)=1155$ Compiled Daily Questions 1-100