Question : An electron gun is placed inside a long solenoid of radius $R$ on its axis. The solenoid has $n \text{ turns/length}$ and carries a current $I$. The electron gun shoots an electron along the radius of the solenoid with speed $v$. If the electron does not hit the surface of the solenoid, maximum possible value of $v$ is (all symbols have their standard meaning) :
(a) $\dfrac{2e\mu_0nIR}{m}$
(b) $\dfrac{e\mu_0nIR}{4m}$
(c) $\dfrac{e\mu_0nIR}{2m}$
(d) $\dfrac{e\mu_0nIR}{m}$
Solution : Top view of solenoid
As we know maximum possible radius of electron $=\dfrac{R}{2}$
$\implies\dfrac{R}{2}=\dfrac{mv}{qB}=\dfrac{mv_{max}}{e(\mu_0nI)}$
$\therefore v_{max}=\dfrac{R}{2}\dfrac{e\mu_0nI}{m}$
$\fbox{$\therefore v_{max}=\dfrac{e\mu_0nIR}{2m}$}$
Comments
Post a Comment