Skip to main content

Daily Question 105


Daily Question 105 


$\textbf{Q105.}$ Let $f(x)=\begin{vmatrix} x & 1 & 1\\ \sin\pi x & 2x^2 & 1\\ x^3 & 3x^4 & 1\\ \end{vmatrix}$. If $f(x)$ be an odd function and its odd value is equal to $g(x)$ then $f(1)g(1)$ is

(A) $-1$

(B) $-5$

(C) $1$

(D) $-4$

$\textbf{Ans.} (D)$

$\textbf{Sol.}$ Given $f(x)$ is an odd function, hence $g(x)=f(-x)=-f(x)$

Now, $f(x)g(x)=-f(x) \cdot f(x)$

$f(x)g(x)=-\begin{vmatrix} x & 1 & 1\\ \sin\pi x & 2x^2 & 1\\ x^3 & 3x^4 & 1\\ \end{vmatrix}\begin{vmatrix} x & 1 & 1\\ \sin\pi x & 2x^2 & 1\\ x^3 & 3x^4 & 1\\ \end{vmatrix}$

$f(x)g(x)=-\begin{vmatrix} x^2 + \sin\pi x + x^3 & x + 2x^2 + 3x^4 & x + 2\\ x\sin\pi x + 2x^2\sin\pi x + x^3 & \sin\pi x + 7x^4 & \sin\pi x + 2x^2 +1\\ x^4 + 3x^4\sin\pi x + x^3 & x^3 + 6x^6 +3x^4 & x^3 + 3x^4 +1\\ \end{vmatrix}$

$f(1)g(1)=-\begin{vmatrix} 2 & 6 & 3\\ 1 & 7 & 3\\ 2 & 10 & 5\\ \end{vmatrix}$

$f(1)g(1)=-4$

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :