Skip to main content

Daily Question 107


Daily Question 107

$\textbf{Q107.}$ If $n={^{m}}C_{2},$ then the value of ${^{n}}C_{2}$ is

(A) $3\cdot{^{m+1}}C_{4}$

(B) ${^{m+2}}C_{4}$

(C) ${^{m+3}}C_{4}$

(D) $m\cdot{^{m}}C_{4}$

$\textbf{Ans.} (A)$

$\textbf{Sol.}$ Given $n={^{m}}C_{2}$

$\implies n=\dfrac{m(m-1)}{2}$

Now, ${^{n}}C_2=\dfrac{n(n-1)}{2}=\dfrac{1}{2}\dfrac{m(m-1)}{2}\left[\dfrac{m(m-1)}{2}-1\right]$

$\implies {^{n}}C_2 = \dfrac{1}{8}m(m-1)(m^2-m-2)$

$\implies {^{n}}C_2 = \dfrac{3}{4!}(m+1)m(m-1)(m-2)$

$\implies {^{n}}C_2 = 3\cdot{^{m+1}}C_4$

Comments

Popular posts from this blog

JEE MAIN 2021 March Attempt Mathematics Q1

Question 1: The middle term in the expansion of $\left(x^2+\dfrac{1}{x^2}+2\right)^{n}$ is (a) $\dfrac{n!}{\left(\dfrac{n}{2}!\right)^2}$ (b) $\dfrac{(2n)!}{\left(\dfrac{n}{2}!\right)^2}$ (c) $\dfrac{(2n)!}{\left(n!\right)^2}$ (d) $\dfrac{1.3.5\ldots(2n+1)}{n!}2^{n}$ Solution :