Daily Question 110
$\textbf{Q110.}$ If $I_{1}=\displaystyle\int\limits_{0}^{1}\dfrac{1+x^8}{1+x^{4}}\mathrm{d}x$ and $I_2=\displaystyle\int\limits_{0}^{1}\dfrac{1+x^{9}}{1+x^{3}}\mathrm{d}x$, then
(A) $I_1 > 1, I_2 < 1$
(B) $I_1 < 1, I_2 > 1$
(C) $1 < I_1 < I_2$
(D) $I_2 < I_1 < 1$
$\textbf{Ans.} (D)$
$\textbf{Sol.}$ As $x\in(0, 1)$
$\implies 1+x^8 < 1+x^4$
$\therefore I_{1}< 1$
Similarly, $I_2 < 1$
Now, $1+x^8 > 1+x^9$ and $1+x^4< 1+x^3$
Thus $\dfrac{1+x^8}{1+x^{4}}>\dfrac{1+x^{9}}{1+x^{3}}$
$\implies I_1 > I_2$
Hence $I_2 < I_1 < 1$
(B) $I_1 < 1, I_2 > 1$
(C) $1 < I_1 < I_2$
(D) $I_2 < I_1 < 1$
$\textbf{Ans.} (D)$
$\textbf{Sol.}$ As $x\in(0, 1)$
$\implies 1+x^8 < 1+x^4$
$\therefore I_{1}< 1$
Similarly, $I_2 < 1$
Now, $1+x^8 > 1+x^9$ and $1+x^4< 1+x^3$
Thus $\dfrac{1+x^8}{1+x^{4}}>\dfrac{1+x^{9}}{1+x^{3}}$
$\implies I_1 > I_2$
Hence $I_2 < I_1 < 1$
Comments
Post a Comment