Daily Question 112
$\textbf{Q112.}$ If $x^{15}-x^{13}+x^{11}-x^9+x^7-x^5+x^3-x=7$, where $x>0$, then
(A) $x^{16}$ is equal to 15
(B) $x^{16}$ is less than 15
(C) $x^{16}$ is greater than 15
(D) none of these
$\textbf{Ans.} (C)$
$\textbf{Sol.}$ Given $x^{15}-x^{13}+x^{11}-x^9+x^7-x^5+x^3-x=7$
$\implies(x^2-1)(x^4+1)(x^8+1)x=7\qquad\ldots(1)$
Now, $x^{16}-1=(x^{2}-1)(x^{2}+1)(x^{4}+1)(x^8+1)$
Using Eq. $(1)$
$\implies x^{16}-1=\dfrac{7}{x}(x^2+1)$
$\implies x^{16}-1=7\left[\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\right]> 14$
$\therefore x^{16}>15$
(B) $x^{16}$ is less than 15
(C) $x^{16}$ is greater than 15
(D) none of these
$\textbf{Ans.} (C)$
$\textbf{Sol.}$ Given $x^{15}-x^{13}+x^{11}-x^9+x^7-x^5+x^3-x=7$
$\implies(x^2-1)(x^4+1)(x^8+1)x=7\qquad\ldots(1)$
Now, $x^{16}-1=(x^{2}-1)(x^{2}+1)(x^{4}+1)(x^8+1)$
Using Eq. $(1)$
$\implies x^{16}-1=\dfrac{7}{x}(x^2+1)$
$\implies x^{16}-1=7\left[\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\right]> 14$
$\therefore x^{16}>15$
Comments
Post a Comment