Daily Question 113
$\textbf{Q113.}$ If $f(x)=\dfrac{x^2}{4+(\ln x)(\ln x)\ldots\infty}$ $\forall$ $x\in[1,\infty)$, then
(A) $f(x)=\dfrac{x^2}{5}, x\in[1,e)$
(B) $f(x)=\dfrac{x^2}{4}, x\in \{e\}$
(C) $f(x)=\dfrac{x^2}{4}, x > e$
(D) $\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\dfrac{7}{12}$
$\textbf{Ans.} (D)$
$\textbf{Sol.}$
Given $f(x)=\dfrac{x^2}{4+(\ln x)(\ln x)\ldots\infty}$ $\forall$ $x\in[1,\infty)$
Let $h(x)=4+(\ln x)(\ln x)\ldots\infty$
$h(x)=\begin{cases} 4, & 1 \le x < e\\ 5, & x=e\\ \infty & x > e\\ \end{cases}$
For $x = e,$ $f(x)=\dfrac{x^2}{5}$
For $1 < x < e,$ $f(x)=\dfrac{x^2}{4}$
Now, $\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\int\limits_{1}^{2}\dfrac{x^2}{4}\mathrm{d}x$
$\implies\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\left[\dfrac{x^3}{12}\right]_{1}^{2}$
$\implies\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\dfrac{7}{12}$
(B) $f(x)=\dfrac{x^2}{4}, x\in \{e\}$
(C) $f(x)=\dfrac{x^2}{4}, x > e$
(D) $\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\dfrac{7}{12}$
$\textbf{Ans.} (D)$
$\textbf{Sol.}$
Given $f(x)=\dfrac{x^2}{4+(\ln x)(\ln x)\ldots\infty}$ $\forall$ $x\in[1,\infty)$
Let $h(x)=4+(\ln x)(\ln x)\ldots\infty$
$h(x)=\begin{cases} 4, & 1 \le x < e\\ 5, & x=e\\ \infty & x > e\\ \end{cases}$
For $x = e,$ $f(x)=\dfrac{x^2}{5}$
For $1 < x < e,$ $f(x)=\dfrac{x^2}{4}$
Now, $\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\int\limits_{1}^{2}\dfrac{x^2}{4}\mathrm{d}x$
$\implies\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\left[\dfrac{x^3}{12}\right]_{1}^{2}$
$\implies\displaystyle\int\limits_{1}^{2}f(x)\mathrm{d}x=\dfrac{7}{12}$
I need more answer i cant understand
ReplyDelete