Daily Question 114
$\textbf{Q114.}$ The value of $\displaystyle\sum_{k=0}^{7}\left[\dfrac{\displaystyle{7 \choose k}}{\displaystyle{14 \choose k}}\sum_{r=k}^{14}{r \choose k}{14 \choose r}\right]$ where $\displaystyle{n \choose x}$ denotes ${^{n}}C_{r}$, is
(A) $6^7$
(B) $8^7$
(C) greater than $7^6$
(D) greater than $7^{8}$
$\textbf{Ans.} (A), (C)$
$\textbf{Sol.}$ Given $\displaystyle\sum_{k=0}^{7}\left[\dfrac{\displaystyle{7 \choose k}}{\displaystyle{14 \choose k}}\sum_{r=k}^{14}{r \choose k}{14 \choose r}\right]$
$=\displaystyle\sum_{k=0}^{7}\left[\dfrac{{^{7}}C_k}{{^{14}C_k}}\sum_{r=k}^{14}{^{r}}C_k\cdot{^{14}}C_{r}\right]$
$=\displaystyle\sum_{k=0}^{7}\left[{^{7}}C_k\dfrac{k!(14-k)!}{14!}\sum_{r=k}^{14}\dfrac{r!}{k!(r-k!)}\cdot\dfrac{14!}{r!(14-r)!}\right]$
$=\displaystyle\sum_{k=0}^{7}\left[{^{7}}C_k\sum_{r=k}^{14}{^{14-k}}C_{r-k}\right]$
$=\displaystyle\sum_{k=0}^{7}{^{7}}C_k\cdot 2^{14-k}$
$=2^{14}\displaystyle\sum_{k=0}^{7}{^{7}}C_k\left(\dfrac{1}{2}\right)^{k}$
$=2^{14}\cdot\left(1+\dfrac{1}{2}\right)^{7}$
$=6^{7} > 7^6$
(B) $8^7$
(C) greater than $7^6$
(D) greater than $7^{8}$
$\textbf{Ans.} (A), (C)$
$\textbf{Sol.}$ Given $\displaystyle\sum_{k=0}^{7}\left[\dfrac{\displaystyle{7 \choose k}}{\displaystyle{14 \choose k}}\sum_{r=k}^{14}{r \choose k}{14 \choose r}\right]$
$=\displaystyle\sum_{k=0}^{7}\left[\dfrac{{^{7}}C_k}{{^{14}C_k}}\sum_{r=k}^{14}{^{r}}C_k\cdot{^{14}}C_{r}\right]$
$=\displaystyle\sum_{k=0}^{7}\left[{^{7}}C_k\dfrac{k!(14-k)!}{14!}\sum_{r=k}^{14}\dfrac{r!}{k!(r-k!)}\cdot\dfrac{14!}{r!(14-r)!}\right]$
$=\displaystyle\sum_{k=0}^{7}\left[{^{7}}C_k\sum_{r=k}^{14}{^{14-k}}C_{r-k}\right]$
$=\displaystyle\sum_{k=0}^{7}{^{7}}C_k\cdot 2^{14-k}$
$=2^{14}\displaystyle\sum_{k=0}^{7}{^{7}}C_k\left(\dfrac{1}{2}\right)^{k}$
$=2^{14}\cdot\left(1+\dfrac{1}{2}\right)^{7}$
$=6^{7} > 7^6$
Casino.com - Go and play your favourite slots!
ReplyDeleteCasinos.lv. 파라오바카라 Casinos.lv is 원벳 먹튀 one of the most popular and most popular casinos and 사다리게임사이트 their games 제목학원 available from 토토 꽁머니 the moment they are launched.