Daily Question 115
$\textbf{Q115.}$ Let
$P_1=\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\\
\end{bmatrix},$ $P_2=\begin{bmatrix}
1 & 0 & 0\\
0 & 0 & 1\\
0 & 1 & 0\\
\end{bmatrix},$ $P_3=\begin{bmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\\
\end{bmatrix},$ $P_4=\begin{bmatrix}
0 & 1 & 0\\
0 & 0 & 1\\
1 & 0 & 0\\
\end{bmatrix},$ $P_5=\begin{bmatrix}
0 & 0 & 1\\
1 & 0 & 0\\
0 & 1 & 0\\
\end{bmatrix},$ $P_6=\begin{bmatrix}
0 & 0 & 1\\
0 & 1 & 0\\
1 & 0 & 0\\
\end{bmatrix}$ and $X=\displaystyle\sum_{k=1}^{6}P_k\begin{bmatrix}
2 & 1 & 3\\
1 & 0 & 2\\
3 & 2 & 1\\
\end{bmatrix}P^{T}_{k}$
Where $P^{T}_{k}$ denotes the transpose of matrix $P_k.$ Then which of the following options is/are correct?
(B) The sum of diagonal entries of $X$ is $18.$
(C) If $X\begin{bmatrix} 1\\ 1\\ 1\\ \end{bmatrix}=\alpha\begin{bmatrix} 1\\ 1\\ 1\\ \end{bmatrix},$ then $\alpha=30.$
(D) $X-30I$ is an invertible matrix.
$\textbf{Ans.} (A), (B), (C)$
$\textbf{Sol.}$ Clearly form the given data,
$P_1=P_1^T=P_1^{-1}$
$P_2=P_2^T=P_2^{-1}$
$\vdots$
$P_6=P_6^T=P_6^{-1}$
Let $A=\begin{bmatrix} 2 & 1 & 3\\ 1 & 0 & 2\\ 3 & 2 & 1\\ \end{bmatrix}$
Here $A^{T}=A\implies A$ is symmetric matrix.$\qquad\ldots(1)$
Now, $X=P_{1}AP_{1}^{T}+P_{2}AP_{2}^{T}+\ldots+P_{6}AP_{6}^{T}$
So, $X^{T}=\left(P_{1}AP_{1}^{T}+P_{2}AP_{2}^{T}+\ldots+P_{6}AP_{6}^{T}\right)^{T}$
$\implies X^{T}=P_{1}A^{T}P_{1}^{T}+P_{2}A^{T}P_{2}^{T}+\ldots+P_{6}A^{T}P_{6}^{T}$
Using Eq. $(1)$
$\implies X^{T}=P_{1}AP_{1}^{T}+P_{2}AP_{2}^{T}+\ldots+P_{6}AP_{6}^{T}$
$\therefore X^{T}=X \implies X$ is symmetric.
Now Let $B=\begin{bmatrix} 1\\ 1\\ 1\\ \end{bmatrix}$
$XB=P_{1}AP_{1}^{T}B+P_{2}AP_{2}^{T}B+\ldots+P_{6}AP_{6}^{T}B$
$\implies XB=P_{1}AB+P_{2}AB+\ldots+P_{6}AB$
$\implies XB=(P_{1}+P_{2}+\ldots+P_{6})\begin{bmatrix} 6\\ 3\\ 6\\ \end{bmatrix}$
$\implies XB=\begin{bmatrix} 2 & 2 & 2\\ 2 & 2 & 2\\ 2 & 2 & 2\\ \end{bmatrix}\begin{bmatrix} 6\\ 3\\ 6\\ \end{bmatrix}=\begin{bmatrix} 30\\ 30\\ 30\\ \end{bmatrix}=30B$
$\therefore\alpha=30$
$\implies (X-30I)B=0$ has non trivial solution $B=\begin{bmatrix} 1\\ 1\\ 1\\ \end{bmatrix}$
$\implies |X-30I|=0$
$\text{trace}(X)=\text{tr}(P_1AP_1^{T})+\ldots+\text{tr}(P_6AP_6^{T})$
$\implies\text{trace}(X)=(2+0+1)+\ldots+(2+0+1)$
$\implies\text{trace}(X)=3\times 6=18$
Nice
ReplyDeleteAnswer is A,B nah ?
ReplyDeleteA,B and C
DeleteNICE
ReplyDeleteYes I had choose right option 🤞
ReplyDeleteGreat website
ReplyDelete