GATE [ME, 2017, 2 marks] Question : $P(0.3)$, $Q(0.5,4)$ and $R(1,5)$ are three points on the curve defined by $f(x)$. Numerical integration is carried out using both Trapezoidal rule and Simpson's rule within limits $x=0$ and $x=1$ for the curve. The difference between the two results will be (a) $0$ (b) $0.25$ (c) $0.5$ (d) $1$ Solution : $x$ $0$ $0.5$ $1$ $y$ $3$ $4$ $5$ $h=\dfrac{1}{2}$ Using Trapezoidal rule $\displaystyle\int\limits_{a}^{b}F(x)dx=\dfrac{h}{2}[(y_0+y_{n})+2(y_1+y_2+\cdots+y_{n-1})]$ $\displaystyle\int\limits_{0}^{1}F(x)dx=\dfrac{1/2}{2}[(3+5)+2(4)]$ $\displaystyle\int\limits_{0}^{1}F(x)dx=4$ Using Simpson's rule $\displaystyle\int\limits_{a}^{b}F(x)dx=\dfrac{h}{3}[(y_0+y_n)+4(y_1+y_3+\cdots+y_{n-1})+2(y_2+y_4+\cdots+y_{n-2})]$ $\displaystyle\int\limits_{0}^{1}F(x)dx=\dfrac{1/2}{3}[(8+16)+4(4)]$ $\dis...
This website is for asking doubts of JEE Main, JEE Advanced, Engineering Mathematics of GATE, Mathematics of UPSC Optional (IAS, IFoS) and Quantitative Aptitude of CAT. Ask doubts on telegram.